

LRRK2 Kinase Assay

By Juliano Alves, Ph.D., Said A. Goueli, Ph.D., and Hicham Zegzouti, Ph.D., Promega Corporation

Scientific Background:

LRRK2 or leucine-rich repeat kinase is a protein with an ankryin repeat region, a leucine-rich repeat (LRR) domain, a kinase domain, a DFG-like motif, a RAS domain, a GTPase domain, a MLK-like domain, and a WD40 domain. Mutations in LRRK2 are the most frequent known cause of autosomal dominant and idiopathic Parkinson's disease with mutations being found within the GTPase and kinase domains (1). LRRK2 cooperates with MET to promote efficient tumor cell growth and survival in various cancers. Down-regulation of LRRK2 in cultured tumor cells compromises MET activation and selectively reduces downstream MET signaling to mTOR and STAT3 (2).

- 1. Yao C, LRRK2-mediated neurodegeneration and dysfunction of dopaminergic neurons in a Caenorhabditis elegans model of Parkinson's disease. Neurobiol Dis. 2010 Oct;40(1):73-81.
- Looyenga BD, Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1439-44.

ADP-Glo™ Kinase Assay

Description

ADP-Glo™ Kinase Assay is a luminescent kinase assay that measures ADP formed from a kinase reaction; ADP is converted into ATP, which is converted into light by Ultra-Glo™ Luciferase (Fig. 1). The luminescent signal positively correlates with ADP amount (Fig. 2) and kinase activity (Fig. 3A). The assay is well suited for measuring the effects chemical compounds have on the activity of a broad range of purified kinases—making it ideal for both primary screening as well as kinase selectivity profiling (Fig. 3B). The ADP-Glo™ Kinase Assay can be used to monitor the activity of virtually any ADP-generating enzyme (e.g., kinase or ATPase) using up to 1mM ATP.

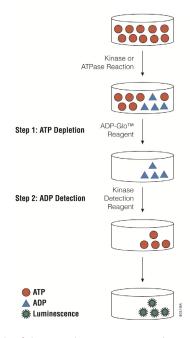


Figure 1. Principle of the ADP-Glo™ Kinase Assay. The ATP remaining after completion of the kinase reaction is depleted prior to an ADP to ATP conversion step and quantitation of the newly synthesized ATP using luciferase/luciferin reaction.

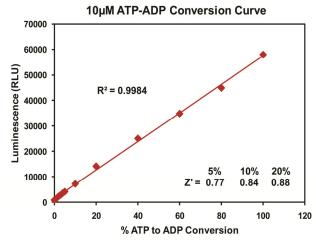
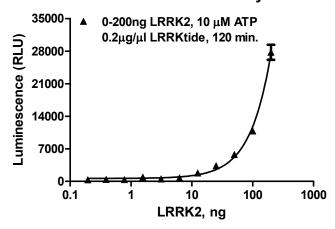


Figure 2. Linearity of the ADP-Glo Kinase Assay. ATP-to-ADP conversion curve was prepared at 10μM ATP+ADP concentration range. This standard curve is used to calculate the amount of ADP formed in the kinase reaction. Z' factors were determined using 200 replicates of each of the % conversions shown.

Promega Corporation • 2800 Woods Hollow Road • Madison, WI 53711-5399 USA • Telephone 608-274-4330 • Fax 608-277-2601

For detailed protocols on conversion curves, kinase assays and inhibitor screening, see *The ADP-Glo™ Kinase Assay* Technical Manual #TM313, available at www.promega.com/tbs/tm313/tm313.html

Protocol


- Dilute enzyme, substrate, ATP and inhibitors in Kinase Buffer.
- Add to the wells of 384 low volume plate:
 - 1 μl of inhibitor or (5% DMSO)
 - 2 μl of enzyme (defined from table 1)
 - 2 μl of substrate/ATP mix
- Incubate at room temperature for 120 minutes.

- Add 5 µl of ADP-GloTM Reagent
- Incubate at room temperature for 40 minutes.
- Add 10 µl of Kinase Detection Reagent
- Incubate at room temperature for 30 minutes.
- Record luminescence (Integration time 0.5-1second).

Table 1. LRRK2 Enzyme Titration. Data are shown as relative light units (RLU) that directly correlate to the amount of ADP produced. The correlation between the % of ATP converted to ADP and corresponding signal to background ratio is indicated for each kinase amount.

LRRK2, ng	200	100	50	25	12.5	6.25	0
RLU	27746	10830	5766	3353	1794	731	352
S/B	79	31	16	10	5.1	2.1	1
% Conversion	31	12	6	3	1.5	0.3	0

Titration of LRRK2 Enzyme

Staurosporine Titration

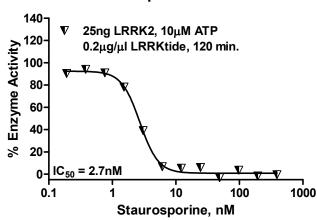


Figure 3. LRRK2 Kinase Assay Development. (A) LRRK2 enzyme was titrated using 10μM ATP and the luminescence signal generated from each of the amounts of the enzyme is shown. (B) Staurosporine dose response was created using 25ng of LRRK2 to determine the potency of the inhibitor (IC₅₀).

Assay Components and Ordering Information: Products	Promega	SignalChem Specific in Higheling Proteins					
	Company	Cat.#					
ADP-Glo [™] Kinase Assay	Promega	V9101					
LRRK2 Kinase Enzyme System	Promega	V4474					
LRRK2 Kinase Enzyme System ADP-Glo [™] + LRRK2 Kinase Enzyme System	Promega	V4475					
LRRK2 Kinase Buffer: 40mM Tris,7.5; 20mM MgCl ₂ ; 0.1mg/ml BSA; 50μM DTT.							